ChE 344 Reaction Engineering and Design

Lecture 16: Thursday, Mar 10, 2022

9:30am-11:30am

Flow reactors with heat exchange

Reading for today's Lecture: Chapter 12.1-12.2

Reading for Lecture 17: Chapter 12.4-12.6

Lecture 16: Non-isothermal Reactor Design-PFR with heat exchangers Related Text: Chapter 12.1-12.2

PFR heat exchanger energy balance on reactor

$$\frac{dT}{dV} = \frac{r_A \Delta H_{rxn} - Ua(T - T_a)}{\sum F_i C_{P,i}}$$

 T_a is the temperature of the heat exchanger fluid at volume V.

 Q_g is the heat 'generated' by the reaction, and Q_r is the heat 'removed' by the heat exchanger (positive if $T > T_a$, negative if $T < T_a$).

U is the heat transfer coefficient with units of $J/m^2 \cdot s \cdot \underline{K}$

a is the shape factor, or heat transfer area divided by unit reactor volume.

PBR heat exchanger energy balance

$$\frac{dT}{dW} = \frac{\frac{Ua}{\rho_b}(T_a - T) + r_A'\Delta H_{rxn}}{\sum F_i C_{p,i}}$$

Co-current heat exchanger balance on heat exchanger fluid

$$\frac{-Ua(T_a - T)}{\dot{m}_c C_{P,c}} = \frac{dT_a}{dV}$$

Counter-current heat exchanger balance on heat exchanger fluid

$$\frac{Ua(T_a - T)}{\dot{m}_c C_{P,c}} = \frac{dT_a}{dV}$$

For counter-current we need to <u>iteratively solve</u> by guessing a T_{a2} , then solving for T_{a0} and comparing to our actual T_{a0} , then modifying our T_{a2} guess.

To solve, need to simultaneously solve the coupled i) mole balance equation ii) heat exchanger energy balance on the reactor, iii) energy balance on the heat exchanger fluid.

"Lecture 16-Heat exchanger T profiles nb" goes through the setup for a zero-order, irreversible reaction.

- Often, we will control the temperature with **heat exchangers**
- We used these for interstage (in between reactors), but we can also have a heat exchanger integrated with our reactor PFR today

Reactor tube

Heat exchanger around

There will be an additional heat term that we previously did not include for adiabatic reactors

Eventually...

- We will need an energy balance on heat exchanging fluid and reactor
- For CSTRs, we will find that there are multiple steady states
- Dealing with multiple reactions each with a ΔH_{rxn}

<u>Industrial reactors will generally have heat exchangers</u> (no longer adiabatic): Recall our energy balance

$$F_{A0}\left[\left(\sum -\theta_i C_{P,i}[T-T_0]\right)\right]$$

$$-\left[\Delta H_{rxn}(T_{ref}) + \Delta C_P(T - T_{ref})\right]X + \dot{Q} - \dot{W}_{shaft} = \frac{d\hat{E}_{sys}}{dt}$$

Reactor with coolant/heating adjacent to reactant volume. $\dot{Q} \neq 0$. In reactant slug have a $\Delta \dot{Q}$ term from V to V+ Δ V.

T_a is the cooling/heating material temp.

How does heat transfer?

Need a temperature gradient

$$\Delta \dot{Q} = U \Delta A (T_a - T)$$

U is the heat transfer coefficient with units of J/m²·s·K

 ΔA is the heat transfer area with respect to ΔV

$$\Delta A \equiv \underbrace{\alpha}_{shape\ factor,} \Delta V$$
 $\underbrace{a}_{shape\ factor,} \underbrace{a}_{heat\ transfer\ area} \underbrace{unit\ reactor\ volume}$

For example, if heat exchanger surrounds a tubular reactor: a very small diameter tube reactor (large a) $\pi \Lambda LD$

a very large diameter tube (small a)

VS.

$$a = \frac{\pi \Delta L D}{\frac{\pi}{4} \Delta L D^2}$$

Energy balance on a reactor element ΔV

In - out + gen - cons = accumulation = 0

$$\sum_{i} F_i H_i \Big|_{V} - \sum_{i} F_i H_i \Big|_{V + \Delta V} + U a \Delta V (T_a - T) = 0$$

This is the balance on the reactor volume ΔV . This time we have a term outside the sums that is non-zero, that has ΔV

$$\frac{\sum F_i H_i|_V - \sum F_i H_i|_{V + \Delta V}}{\Delta V} + Ua(T_a - T) = 0$$

Limit as ΔV goes to zero,

$$-\frac{d\left[\sum F_i H_i\right]}{dV} + Ua(T_a - T) = 0$$

$$Ua(T_{a} - T) = \frac{d\left[\sum F_{i}H_{i}\right]}{dV} = \sum F_{i}\frac{dH_{i}}{dV} + \sum H_{i}\frac{dF_{i}}{dV}$$

$$H_{i}(T) = H_{i}^{0}(T_{ref}) + \int_{T_{ref}}^{T} C_{P,i}dT$$

$$\frac{dH_{i}}{dV} = \frac{dH_{i}}{dT}\frac{dT}{dV} = C_{P,i}\frac{dT}{dV}$$

- To evaluate the $\frac{dF_i}{dV}$ terms, we will need to consider more details about the reactor.
- This is different than for our adiabatic case where we had a general equation that applied to several different reactor types. (Adiabatic had same EB for CSTR/PFR)

For PFR we get relation between flow rate and volume from our mole balance:

$$\frac{dF_i}{dV} = r_i$$

$$A + \frac{b}{a}B \rightarrow \frac{c}{a}C + \frac{d}{a}D$$

$$\frac{dF_A}{dV} = r_A;$$

$$\frac{dF_B}{dV} = r_B = \frac{b}{a}r_A; \frac{dF_C}{dV} = r_C = -\frac{c}{a}r_A; \frac{dF_D}{dV} = r_D = -\frac{d}{a}r_A$$

$$\frac{dF_i}{dV} = -\nu_i r_A$$

Plugging back into our energy balance for a PFR

$$Ua(T_a - T) = \sum F_i \left(C_{P,i} \frac{dT}{dV} \right) + \sum H_i (-\nu_i r_A)$$

$$Ua(T_a - T) = \sum F_i C_{P,i} \frac{dT}{dV} - \sum H_i \nu_i r_A$$

$$Ua(T_a - T) = \frac{dT}{dV} \sum [F_i C_{P,i}] - r_A \Delta H_{rxn}$$

$$Q_r \equiv Ua(T - T_a)$$

- Q_r -Heat 'removed' Heat 'generated' Q_g

$$\frac{dT}{dV} = \frac{Ua(T_a - T) + r_A \Delta H_{rxn}}{\sum F_i C_{P,i}}$$
$$F_i = F_{A0}(\theta_i + \nu_i X)$$

PFR mole balance design equation:

$$F_{A0}\frac{dX}{dV} = -r_A$$

PFR energy balance with heat exchanger:

$$\frac{dT}{dV} = \frac{Ua(T_a - T) + r_A \Delta H_{rxn}}{\sum F_i C_{P,i}} = \frac{r_A \Delta H_{rxn} - Ua(T - T_a)}{F_{A0} \left[\sum \theta_i C_{P,i} + \Delta C_P X\right]}$$

$$F_i = F_{A0}(\theta_i + \nu_i X)$$

Now we have two non-linear coupled ODEs, can solve with software of our choice if we assume T_a is constant everywhere in the reactor.

 ΔH_{rxn} at T, $r_A \Delta H_{rxn}$ is positive (negatives cancel) for proceeding exothermic reaction

For an exothermic reaction in a PFR, how much total heat must be removed to maintain isothermal operation? $A \rightarrow B$

$$F_{A0} = 1 \text{ mol min}^{-1}$$

$$T_{0} = 300 \text{ K}$$

$$\Delta H_{rxn} = -20 \text{ kJ mol}^{-1}$$

$$F_{A0} \frac{dX}{dV} = -r_{A}$$

$$\frac{dT}{dV} = \frac{r_{A} \Delta H_{rxn} - Ua(T - T_{a})}{\sum F_{i} C_{P,i}}$$

total heat removed =
$$\int Ua(T - T_a)dV$$
 For dT/dV = 0
$$F_{A0}\frac{dX}{dV} = \frac{-Ua(T - T_a)}{\Delta H_{rxn}}$$

Total $Q_{removed} = -1 \ mol \ min^{-1}(0.5)(-20 \ kJ \ mol^{-1})$ Total $Q_{removed} = 10 \ kJ \ min^{-1}$ If isothermal, E.B. is

$$\frac{dT}{dV} = 0 = \frac{r_A \Delta H_{rxn} - Ua(T - T_a)}{\sum F_i C_{P,i}}$$

$$0 = r_A \Delta H_{rxn} - Ua(T - T_a)$$

$$r_A = \frac{Ua(T - T_a)}{\Delta H_{rxn}}$$

Mole balance is

$$F_{A0}\frac{dX}{dV} = -r_A = -\frac{Ua(T - T_a)}{\Delta H_{rrn}}$$

Rearrange, then take integral

$$F_{A0}\Delta H_{rxn}dX = -Ua(T - T_a)dV$$

$$\int F_{A0}\Delta H_{rxn}dX = -\int Ua(T - T_a)dV$$

$$Total\ rem. = \int Ua(T - T_a)dV = -1\ mol\ min^{-1}(0.5)(-20\ kJ\ mol^{-1}) = 10kJmin^{-1}$$

Where would this heat be coming from? From the heating fluid, which may be flowing co or counter-current

$$T_a = 280 \text{ K}$$
 $T_0 = 300 \text{ K}$

Here co-current

In reality, if the heating fluid is removing heat, it itself must be heating up, so $T_a = f(V)$

If T_a is not constant, we will need an energy balance on the heating/cooling element

Quick aside on heat exchanger with PBR

For a packed bed reactor, we may use catalyst weight (W) instead of reactor volume (V)

$$W = V \rho_b$$
 Catalyst bed density
$$\frac{dT}{dW} = \frac{dT}{dV} \frac{dV}{dW} = \frac{dT}{dV} \frac{1}{\rho_b}$$

$$\frac{dT}{dW} = \frac{\frac{Ua}{\rho_b} (T_a - T) + r_A' \Delta H_{rxn}}{\sum F_i C_{P,i}}$$

- Lets consider an example:
- In a PFR where A \rightarrow B, where the reaction is zero-order in A, endothermic and $C_{P,A} = C_{P,B}$:
- Sketch X as a function of space time or V, assuming:
- a. Isothermal reactor at T₀
- b. Adiabatic reactor at inlet T₀
- c. Reactor with heat exchanger with fluid at $T_a = T_0$
- d. Reactor with heat exchanger with fluid at $T_{a0} = T_0$ at inlet, but heat exchanger fluid cools as it passes along reactor
- We will sketch them on the same plot for comparison

Conceptual question:

In a PFR where A \rightarrow B, where the reaction is zero-order in A, endothermic and $C_{P,A} = C_{P,B}$:

Sketch X as a function of space time or V, assuming:

a. Isothermal reactor at T₀

b. Adiabatic reactor at inlet T_0

Discuss with your neighbors:

- In a PFR where A \rightarrow B, where the reaction is zero-order in A, endothermic and $C_{P,A} = C_{P,B}$:
- At a finite space time or V what is the order of the conversions from low to high?
- a. Isothermal reactor at T₀
- b. Adiabatic reactor at inlet T₀
- c. Reactor with heat exchanger with fluid at $T_a = T_0$
- A) $X_{\text{heat exchanger}} > X_{\text{adiabatic}} > X_{\text{isothermal}}$
- B) $X_{isothermal} > X_{adiabatic} > X_{heat exchanger}$
- (X) $X_{isothermal} > X_{heat exchanger} > X_{adiabatic}$
- D) $X_{\text{heat exchanger}} > X_{\text{isothermal}} > X_{\text{adiabatic}}$

In a PFR where A \rightarrow B, where the reaction is zero-order in A, endothermic and $C_{P,A} = C_{P,B}$:

Sketch X as a function of space time or V, assuming:

c. Reactor with heat exchanger with fluid at $T_a = T_0$

$$\frac{dT}{dV} = \frac{Ua(T_a - T) + r_A \Delta H_{rxn}}{\sum F_i C_{P,i}} = \frac{Ua(T_a - T) - k \Delta H_{rxn}}{\sum F_i C_{P,i}}$$

For a heat exchanger with coolant, what if coolant temperature (T_a) is not constant?

Energy balance on co-current coolant flow: Same Ua, opp sign

$$\dot{m}_c H_c \Big|_V - \dot{m}_c H_c \Big|_{V+\Delta V} - Ua\Delta V (T_a - T) = 0$$

$$\frac{\dot{m}_c H_c |_V - \dot{m}_c H_c |_{V+\Delta V}}{\Delta V} - Ua(T_a - T) = 0$$

 \dot{m}_c is mass flow rate of heat exchange fluid (e.g. [=] kg/hr) H_c is mass enthalpy of heat exchange fluid (e.g. [=] kJ/kg)

Take the limit as ΔV goes to zero,

$$-\frac{d\dot{m}_c H_c}{dV} - Ua(T_a - T) = 0$$

$$-Ua(T_a - T) = \frac{d\dot{m}_c H_c}{dV} = \dot{m}_c \frac{dH_c}{dV} + H_c \frac{d\dot{m}_{c,*}}{dV}^0$$

$$H_c(T_a) = H_c^0(T_{ref}) + \int_{T_{ref}}^{T_a} C_{P,c} dT$$

$$\frac{dH_c}{dV} = \frac{dH_c}{dT_a} \frac{dT_a}{dV} = C_{P,c} \frac{dT_a}{dV}$$

$$-Ua(T_a - T) = \dot{m}_c C_{P,c} \frac{dT_a}{dV} + H_c(0)$$

 $C_{P,C}$ is mass heat capacity of heating fluid [=] kJ kg⁻¹ K⁻¹

This is for the coolant temperature, down the reactor (co-current):

Controlled by us
$$T_{a0}$$
 T_{a0} T_{a0} T_{a0} T_{a0} From EB T_{a2} T_{a0} $T_{$

Balance on the reactor fluid:

This will also be changing now!

$$\frac{dT}{dV} = \frac{r_A \Delta H_{rxn} - Ua(T - T_a)}{\sum F_i C_{P,i}}$$

Discuss with your neighbors:

- PFR: A \rightarrow B, zero-order in A, endothermic and $C_{P,A} = C_{P,B}$:
- What is the order of the conversions from low to high?
- a. Isothermal reactor at T₀
- b. Adiabatic reactor at inlet T₀
- c. Reactor with heat exchanger with fluid at $T_a = T_0$
- d. Reactor with heat exchanger with fluid at $T_a = T_0$ at inlet, but heat exchanger fluid cools as it passes along reactor

$$X_{isothermal} > X_{H.E.,Ta} > X_{heat exchanger,Ta(V)} > X_{adiabatic}$$

- B) $X_{isothermal} > X_{heat exchanger,Ta(V)} > X_{H.E.,Ta} > X_{adiabatic}$
- C) $X_{isothermal} > X_{H.E.,Ta} = X_{heat exchanger,Ta(V)} > X_{adiabatic}$
- D) $X_{isothermal} > X_{H.E.,Ta} > X_{heat exchanger,Ta(V)} = X_{adiabatic}$

PFR: A \rightarrow B, zero-order in A, endothermic and $C_{P,A} = C_{P,B}$:

Sketch X as a function of space time, assuming:

d. Reactor with heat exchanger with fluid at $T_a = T_0$ at inlet, but heat exchanger fluid cools as it passes along reactor

If $\dot{m}_c C_{P,c}$ is moderate: Once (T_a-T) is large enough heat removal = gen.! 300 T[V] isothermal 250 — T[V] adiabatic 200 Temperature — T[V] Ua low 150 — T[V] Ua high 100 T[V] co-current Ua low 50 ---- Ta[V] co-current 0 0.3 X[V] isothermal Conversion X[V] adiabatic 0.2 — X[V] Ua low 0.1 — X[V] Ua high X[V] co-current **Ua low** 0.0 0.2 0.4 0.6 8.0 0.0 Volume

If $\dot{m}_c C_{P,c}$ is very large, T_a remains constant

If $\dot{m}_c C_{P,c}$ is very small, similar to adiabatic

From EB
$$T_a(V=0)$$
 $T_a(V=V_{PFR})$ by us T_{a0} T_{a2} T_{a2} T_{a2} T_{a3} T_{a4} T_{a5} T_{a

Controlled

 $\frac{Ua(T_a - T)}{\dot{m}_c C_{P,c}} = \frac{dT_a}{dV}$

Countercurrent:

$$\dot{m}_c C_{P,c}$$
 \overline{dV} EB reacting fluid: Mole balance:

 $dT Ua(T_a - T) + r_A \Delta H_{rxn}$

 $\overline{dV} = \overline{\sum_i F_i C_{P,i}}$ $F_{A0} \overline{dV} = -r_A$ Because you do not know $T_a(V=0) = T_{a2}$ for counter current, it is harder to solve (need to do trial and error).

Example:

Countercurrent heat exchanger, exothermic reaction with T_{a0} = 300 K and known value of T_{0} .

Guess value of T_{a2} , solve for T_{a0} . Start with $T_{a2} = 340 \text{ K}$

Guess a new value of T_{a2} (320 K), solve for new T_{a0} to see if it matches